Data preparation is a principal component of machine learning (ML) pipelines. In fact, it is estimated that data professionals spend about 80 percent of their time on data preparation. In this intensive competitive market, teams want to analyze data and extract more meaningful insights quickly. Customers are adopting more efficient and visual ways to build data processing systems.
Amazon SageMaker Data Wrangler simplifies the data preparation and feature engineering process, reducing the time it takes from weeks to minutes by providing a single visual interface for data scientists to select, clean data, create features, and automate data preparation in ML workflows without writing any code. You can import data from multiple data sources, such as Amazon Simple Storage Service (Amazon S3), Amazon Athena, Amazon Redshift, and Snowflake. You can now also use Amazon EMR as a data source in Data Wrangler to easily prepare data for ML.
Analyzing, transforming, and

Continue reading



At FusionWeb, we aim to look at the future through the lenses of imagination, creativity, expertise and simplicity in the most cost effective ways. All we want to make something that brings smile to our clients face. Let’s try us to believe us.