Today, many AWS customers are building enterprise-ready machine learning (ML) platforms on Amazon Elastic Kubernetes Service (Amazon EKS) using Kubeflow on AWS (an AWS-specific distribution of Kubeflow) across many use cases, including computer vision, natural language understanding, speech translation, and financial modeling.
With the latest release of open-source Kubeflow v1.6.1, the Kubeflow community continues to support this large-scale adoption of Kubeflow for enterprise use cases. The latest release includes many new exciting features like support for Kubernetes v1.22, combined Python SDK for PyTorch, MXNet, MPI, XGBoost in Kubeflow’s distributed Training Operator, new ClusterServingRuntime and ServingRuntime CRDs for model service, and many more.
AWS contributions to Kubeflow with the recent launch of Kubeflow on AWS 1.6.1 support all upstream open-source Kubeflow features and include many new integrations with the highly optimized, cloud-native, enterprise-ready AWS services that will help you build highly reliable, secure, portable, and scalable ML systems.
In this post,

Continue reading



At FusionWeb, we aim to look at the future through the lenses of imagination, creativity, expertise and simplicity in the most cost effective ways. All we want to make something that brings smile to our clients face. Let’s try us to believe us.