Amazon SageMaker and SageMaker inference endpoints provide a capability of training and deploying your AI and machine learning (ML) workloads. With inference endpoints, you can deploy your models for real-time or batch inference. The endpoints support various types of ML models hosted using AWS Deep Learning Containers or your own containers with custom AI/ML algorithms. When you launch SageMaker inference endpoints with multiple instances, SageMaker distributes the instances across multiple Availability Zones (in a single Region) for high availability.
In some cases, however, to ensure lowest possible latency for customers in diverse geographical areas, you may require deploying inference endpoints in multiple Regions. Multi-Regional deployment of SageMaker endpoints and other related application and infrastructure components can also be part of a disaster recovery strategy for your mission-critical workloads aimed at mitigating the risk of a Regional failure.
SageMaker Projects implements a set of pre-built MLOps templates that can help manage

Continue reading



At FusionWeb, we aim to look at the future through the lenses of imagination, creativity, expertise and simplicity in the most cost effective ways. All we want to make something that brings smile to our clients face. Let’s try us to believe us.