As more organizations move to machine learning (ML) to drive deeper insights, two key stumbling blocks they run into are labeling and lifecycle management. Labeling is the identification of data and adding labels to provide context so an ML model can learn from it. Labels might indicate a phrase in an audio file, a car in a photograph, or an organ in an MRI. Data labeling is necessary to enable ML models to work against the data. Lifecycle management has to do with the process of setting up an ML experiment and documenting the dataset, library, version, and model used to get results. A team might run hundreds of experiments before settling on one approach. Going back and recreating that approach can be difficult without records of the elements of that experiment.
Many ML examples and tutorials start with a dataset that includes a target value. However, real-world data doesn’t

Continue reading



At FusionWeb, we aim to look at the future through the lenses of imagination, creativity, expertise and simplicity in the most cost effective ways. All we want to make something that brings smile to our clients face. Let’s try us to believe us.